A generalized manifold topology for branching space-times
نویسنده
چکیده
The logical theory of branching space-times (Belnap, Synthese 1992), which provides a relativistic framework for studying objective indeterminism, remains mostly disconnected from the discussion of space-time theories in the philosophy of physics. Earman has criticized the branching approach and suggested “pruning some branches from branching space-time” (2008). This paper identifies the different—order-theoretic vs. topological— points of view of both discussions as a reason for certain misunderstandings, and tries to remove them. Most importantly, we give a novel, topological criterion of modal consistency that usefully generalizes an earlier criterion, and we introduce a differentialgeometrical version of branching space-times as a non-Hausdorff (generalized) manifold.
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملOn some generalized recurrent manifolds
The object of the present paper is to introduce and study a type of non-flat semi-Riemannian manifolds, called, super generalized recurrent manifolds which generalizes both the notion of hyper generalized recurrent manifolds [A.A. Shaikh and A. Patra, On a generalized class of recurrent manifolds, Arch. Math. (Brno) 46 (2010) 71--78.] and weakly generalized recurrent manifolds ...
متن کاملBranching for general relativists
The paper develops a theory of branching spatiotemporal histories that accommodates indeterminism and the insights of general relativity. A model of this theory can be viewed as a collection of overlapping histories, where histories are defined as maximal consistent subsets of the model’s base set. Subsequently, generalized (non-Hausdorff) manifolds are constructed on the theory’s models, and t...
متن کاملOn Generalized Injective Spaces in Generalized Topologies
In this paper, we first present a new type of the concept of open sets by expressing some properties of arbitrary mappings on a power set. With the generalization of the closure spaces in categorical topology, we introduce the generalized topological spaces and the concept of generalized continuity and become familiar with weak and strong structures for generalized topological spaces. Then, int...
متن کاملQuantale-valued fuzzy Scott topology
The aim of this paper is to extend the truth value table oflattice-valued convergence spaces to a more general case andthen to use it to introduce and study the quantale-valued fuzzy Scotttopology in fuzzy domain theory. Let $(L,*,varepsilon)$ be acommutative unital quantale and let $otimes$ be a binary operationon $L$ which is distributive over nonempty subsets. The quadruple$(L,*,otimes,varep...
متن کامل